
 
 
 
 
 
 
 
 
 
 

Network Bandwidth Utilization Forecast Model on 
High Bandwidth Network 

 

Wucherl (William) Yoo, Alex Sim 

 
Lawrence Berkeley National Laboratory, Berkeley, CA, USA 

 
 
 

 

  



 

Disclaimers 
This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



Network Bandwidth Utilization Forecast Model on
High Bandwidth Network

Wucherl (William) Yoo
Lawrence Berkeley National Laboratory

Email: wyoo@lbl.gov

Alex Sim
Lawrence Berkeley National Laboratory

Email: asim@lbl.gov

Abstract—With the increasing number of geographically dis-

tributed scientific collaborations and the scale of the data

size growth, it has become more challenging for users to

achieve the best possible network performance on a shared

network. We have developed a forecast model to predict expected

bandwidth utilization for high-bandwidth wide area network. The

forecast model can improve the efficiency of resource utilization

and scheduling data movements on high-bandwidth network

to accommodate ever increasing data volume for large-scale

scientific data applications. Univariate model is developed with

STL and ARIMA on SNMP path utilization data. Compared

with traditional approach such as Box-Jenkins methodology, our

forecast model reduces computation time by 83.2%. It also shows

resilience against abrupt network usage change. The accuracy

of the forecast model is within the standard deviation of the

monitored measurements.
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I. INTRODUCTION

With advances in large scale experiments and simulations,
the data volume of scientific applications has rapidly grown.
Even with advances in network technology, it has become
more challenging to efficiently coordinate network resources
and to achieve best possible network performance on a shared
network. It is also challenging to build a forecast model
for network bandwidth utilization with accurate and fine-
grained forecast due to computational complexities. To support
efficient resource management and scheduling data movement
for ever increasing data volume in extreme-scale scientific
applications, we have developed an analytical model in order to
characterize and forecast 1 bandwidth utilization on high-speed
wide area network (WAN). This forecast model can improve
the efficiency of network bandwidth resource utilization. In
addition, it can help to find efficient resource scheduling and
path finding for data transfers.

The forecast model can improve the efficiency of network
bandwidth resource utilization. In addition, it can help efficient
resource scheduling and path finding for data transfers. The
goal of this paper is to model the network bandwidth utilization
between two sites to support data flow timing and parameter
decisions as well as network topology or link planning. Our

1In general, forecast is a subset of prediction. In this paper, we explicitly
make a distinction between forecast and prediction. We use forecast as
estimation of future values based on the analytical model built from past
observations. We use prediction as estimation of values based on analytical
model when forecast is inappropriate to use, e.g., 1) forecast of network traffic
of tomorrow based on time series model of past observations 2) prediction of
present network traffic using observations from packet probes.

modeling efforts can help systematic data transfer parameter
decisions without over/under-provision. One of our previous
works proposed a network reservation framework to provide
guaranteed bandwidth on ESNet [5]. Our forecast model can
complement this type of reservation system or a system to
select alternate paths for large data transfer.

It is better for the model to be computationally efficient
and comparably accurate in order to forecast multiple paths of
users’ interests. We select a size of an appropriate training set
that shows relatively accurate forecast error with manageable
computational requirement. In addition, we have studied the
effect of variability of the bandwidth usage on the forecast
accuracy and the appropriate threshold to make our model
resilient against the abrupt usage change.

The experimental data on SNMP link utilization has been
collected by ESnet [1] in 2013 and 2014 on each router.
Our experiments use SNMP data from 6 directional paths
connecting a pair of large data facilities described in Sec. IV-A.
The SNMP data consists of the size of bandwidth utilization
and time-scale as 30 seconds interval. The maximum size of
bandwidth utilization is extracted at each interval from the
routers in each path, which represents bandwidth utilization
in the path. It is well known that Internet traffic has cyclic
self-similarity in daily interval. We show this daily seasonality
is also present in the SNMP data in Sec. IV-B. Our analysis
focuses on the traffic for large-scale scientific data movement
instead of Internet traffic.

We have developed the forecast model as a univariate time
series model. The first step is to remove the seasonality in
the measurement data, and we use Seasonal Decomposition of
Time Series by Loess (STL) [9]. STL decomposes the SNMP
data into the time series of seasonality, trend and remainder.
We seasonally adjust the SNMP data by deducting seasonality
component. Then, we use AutoRegressive Integrated Moving
Average (ARIMA) on the seasonally adjusted time series.
The orders of ARIMA model are selected in an automated
mechanism based on the assumption of stationary time series
about the SNMP data. We have observed that there is no
significant changes in the average bandwidth utilization in
the training dataset window (up to 8 weeks) throughout 2013
and 2014. We show that our assumption is appropriate for
the SNMP data in Sec. IV-C. Our forecast model reduces
computation time for forecast by 83.2% compared to the
traditional approach such as Box-Jenkins methodology [7][8]
to find the best fit forecast model using ARIMA. In addition,
our model shows more resilience against abrupt network usage
change.



The rest of paper is organized as follows. Sec. II presents
related work. Sec. III demonstrates the model design and
implementation. Sec. IV presents experimental evaluation of
the forecast model, and Sec. V concludes.

II. RELATED WORK

The studies have shown self-similarity of network traffic
in LAN [21], WAN [26], and World Wide Web [12]. The self-
similarity of network traffic allows to use past history to fore-
cast near-term future. Qiao et al. [28] presented an empirical
study of the forecast error on different time-scales, showing
that the forecast error does not monotonically decrease with
smoothing for larger time-scale.

Benson el al. [6] studied network traffic patterns in data
centers using SNMP data. Yin el al. [35] proposed a mecha-
nism to predict application-layer data throughput. Balman et
al. [5] proposed a network reservation framework to provide
guaranteed bandwidth. Our forecast model complements these
works by providing traffic forecast information.

Available bandwidth can be estimated by sending probe
packets as proposed from measurement tools: Pathload [18],
pathChirp [29], IGI [16], and Spruce [34]. Shriram et al. [32]
conducted a comparison study available bandwidth estimation
from various measurement tools in network simulator (ns2) [2].
Croce et al. [11] proposed bandwidth estimation techniques
from large-scale distributed systems. Aceto et al. [3] proposed
end-to-end available bandwidth measurement infrastructure.
Our forecast model focuses on the prediction of available
bandwidth using passive measurements from routers instead
of estimation from probing packets.

Several prediction models of TCP data transfers have been
proposed. Throughput prediction models were proposed for
large TCP transfers [14][23]. Mirza et al. [24] used a machine
learning mechanism to predict TCP throughput. While these
works are restricted to predict TCP data transfers, our forecast
model forecasts aggregated network throughput for a network
path.

Several models have been proposed to forecast network
traffic. Sang et al. [30] proposed short-term (a few minutes)
forecast model using ARMA with 1 sec time-scale data.
Papagiannaki et al. [25] proposed long-term (1 year) forecast
model of Internet backbone traffic using ARIMA with 1 week
time-scale data. Krithikaivasan et al. [19] proposed mid-term (1
day) forecast model using ARCH model with 15 minute time-
scale data. Our model focuses on mid-term (1 day) forecast
of the bandwidth utilization using 30 second time-scale data.
Since the number of forecast points ( the duration of forecast

the time-scale ) is
order of magnitude larger than these models, our forecast
model requires more computation and accuracy than these
proposed models. Our model overcame these challenges by
seasonal adjustment and stationary assumption, which were
not discussed in these models.

III. MODEL DEVELOPMENT

We have developed the forecast model as a univariate time
series model. A forecast model estimates the future values
using the observed SNMP data up to time n (x1, x2, · · · , xn).
The forecast of h steps ahead is denoted as x̂n(h) at time

n + h. When the observed value (xn+h) is available at time
n+ h, we calculate the forecast error denoting en(h) as:

en(h) = xn+h � x̂n(h) (1)

A. Logit Transformation

The theoretical maximum value of possible traffic size of
the SNMP is 10

10 bits and the minimum value is 0 bit within
one second in 100G bit/second bandwidth of the current ESnet.
As the SNMP data is collected in every 30 second interval, the
traffic size per 30 second unit time is normalized by dividing
by 30. Logit transformation is applied to the SNMP data x

to set the lower and upper bounds based on these limits.
Time series data x containing n observations is transformed
to time series data y with lower bound a and upper bound b

(1010 bit/second) as denoted in Eq. 2 The lower bound a is
approximated to 1 bit/second instead of 0 bit/second. While
there are very few cases observed when no transfer occurs,
approximating to 1 bit/second is ignorable in the 100Gbps
network.

x = time series xt = x1, x2 · · · , xn

y = time series yt = y1, y2 · · · , yn
y = logit(x) = log(

x� a

b� x

) (2)

B. Seasonal Adjustment

After the logit transformation defined in Eq.2, the trans-
formed SNMP data y is seasonally adjusted. Removing sea-
sonal components from the time series allows analysis of the
non-seasonal trend of the time series. This is essential to build
forecast model that can project the trend and the seasonality of
past history to future values. We use Seasonal Decomposition
of Time Series by Loess (STL) [9] for this seasonal adjustment.
STL decomposes the logit transformed SNMP data into the
components of seasonality S, trend T , and remainder R as
denoted in Eq. 3.

y = yt = St + Tt +Rt (3)

STL applies a sequence of smoothing from Loess (Locally
Weighted Regression Fitting) [10]. This smoothing sequence
progressively refines and improves the estimates of the sea-
sonal and trend components. There exist several parameters to
derive the STL model. The seasonal cycle is evaluated with
possible choices such as minute, hour, day and week. The
smoothing windows for the seasonality (ns) for trend (nt)
are evaluated with different values. After the decomposition,
we seasonally adjust SNMP data by deducting seasonality
component denoted as y0 = yt0 = yt � St = Tt +Rt.

After the decomposition, we seasonally adjust SNMP data
by deducting seasonality component denoted in Eq. 4.

y0 = yt0 = yt � St = Tt +Rt (4)

C. Bandwidth Utilization Prediction

The forecast model is developed by using AutoRegressive
Integrated Moving Average (ARIMA) on the seasonally ad-
justed time series, y0. ARIMA model consists of the orders of
autoregressive process (p), the number of differences (d), and



the number of moving average (q). The orders of ARIMA
model (p,d,q) are selected in an automated mechanism as
follows. First, the stationarity of the time series is confirmed
by KPSS test [20]. When the stationary is confirmed, the order
of differences d is selected as 0. Otherwise, d is selected as
1, which is enough to make the non-stationary time series to
stationary in the experiments. We use Akaike’s Information
Criterion (AIC) [4] to automatically select the modeling
parameters as shown in the Box-Jenkins methodology [7][8].
AIC represents the sum of the maximum log likelihood for
the estimation and the penalty from the orders of selected
model. This combination allows simpler models with less
numbers of orders unless the possible model shows severely
low likelihood for the estimation. We calculate AIC with
different combinations of p and q incrementing from 1 until the
sum of p and q reaches to a certain maximum value. The model
choice from AIC converges and is asymptotically equivalent
to that of cross-validation [33][31]. The best model with p

and q is chosen with the least value of AIC.2 In our case,
the maximum sum of p and q is 10, and this is the smallest
size that selects the modeling parameters result in reasonably
accurate forecast from the experimental data.

After the the orders of the ARIMA model are selected,
we fit the model with the seasonally adjusted time series
(y10, y20, · · · , yn0) and the training set of n observed data
(x1, x2, · · · , xn). The ARIMA model fitting is to estimate
the parameters with the orders of autoregressive process and
moving average process (after the orders of differencing if
d > 0). The forecast of h time steps ahead is computed from
the fitted model (ŷh0). Then, the seasonality component is
added to these forecast values (ŷh) as in Eq 5. The seasonality
forecast ( ˆSn+1,

ˆ

Sn+2, · · · , ˆSn+h) can be estimated by simply
repeating cyclic period in the decomposed seasonal component
(S1, S2, · · · , Sn).

ŷh = ŷh0+ ˆ

Sn+h (5)

Then, these forecast values are converted to the original scale
using the reverse logit transformation as in Eq. 6.

x̂h = (b� a) · exp(ŷh)

1 + exp(ŷh)
+ a (6)

We evaluate the forecast error by a cross-validation mecha-
nism for time series data proposed by Hijorth [15]. The original
mechanism by Hijorth computes a weighted sum of one-
step-ahead forecasts by rolling the origin when more data is
available. Similarly, we compute the average forecast error for
1 week by forecasting one target day (h = 1, · · · , 2880) and
rolling 6 more days. We compare this cross-validation results
of the forecast errors as Root Mean Squared Error (RMSE)
in Sec. IV, where RMSE is calculated with RMSE(h) =s

1

h

·
hP

i=1
(en(i))

2.

2AIC is combined with the positive value of penalty from the orders and
negative log-likelihood.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Table I describes 6 directional paths used in the experi-
ments.3 These paths connect two sites on ESnet in the US.
Each path consists of 6 or 7 links connected with the routers
in the path. PID is the path identification and will be used to
distinguish the paths. We constructed the bandwidth utilization
time series data by selecting the maximum value on a link in
each path, for a given data collection interval. The experiments
were conducted on a machine with 8-core CPU, AMD Opteron
6128 and 64 GB memory. To reduce overall execution time,
we parallelized the computational tasks of parameter searching,
fitting and calculating the forecast error.

The resolution of SNMP data can be decreased by 30
second time unit into larger scales and aggregating the traffic
size, e.g., aggregating and normalizing the traffic into 1 minute,
5 minutes, 10 minutes, 30 minute, 1 hour, or 1 day time unit.
As decreasing resolution of network traffic results in reducing
the variances of the traffic, it can show less forecast error [28].
It also leads to less computation time due to the decreased data
size with lower resolution. However, we did not decrease the
resolution of the SNMP data since it could forecast the most
fine-grained level from the given the SNMP data. The forecast
error with decreasing resolution showed better accuracy by
sacrificing the granularity of the forecast, which was confirmed
in our experiments.4

TABLE I: Description of Paths.

PID Source Destination # of Links
P1 NERSC ANL 7
P2 ANL NERSC 7
P3 NERSC ORNL 7
P4 ORNL NERSC 7
P5 ANL ORNL 6
P6 ORNL ANL 6

Fig. 1 shows the plots of bandwidth utilization of the paths
in Table I from Feb. 10, 00:00:00, GMT 2014 to Feb. 16,
23:59:30, GMT 2014. 5 We used the SNMP data during this
time period as test set, and evaluated the forecast error using
cross-validation. We computed the forecast error as Root Mean
Squared Error (RMSE) from n observations (x1, x2, · · · , xn)
based on the Eq. 1. After deriving forecast values for the first
day of the test set (x̂1, x̂2, · · · , x̂2880), the forecast error for the
first target day RMSE(hday1) = RMSE(h) was computed.
The forecast error for the second target day RMSE(hday2) =

MAE(h+h) was computed by adding the observations from
the first target day to the previous training set (x1, x2, · · · , xn,
xn+1,xn+2, · · · ,xn+h). This processes were repeated for the
next 5 target days from the third target day. Then, the average
of forecast errors for the 7 target days was the forecast error
for the test set.

3We anonymize specific site names on a path for the data policy.
4This paper does not include the result from decreasing resolution.
5We use Greenwich Mean Time (GMT) to resolve ambiguity in the

transition time between PST and PDT. The date and the time are used in
this paper in GMT.
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Fig. 1: Bandwidth Utilization Graphs for Experimental Paths: The size of traffic is shown in vertical axis as bit/s. The horizontal
axis shows the time from Feb. 10, 00:00:00, GMT 2014 to Feb. 16, 23:59:30, GMT 2014.

B. Seasonality Analysis

Fig. 2 shows the seasonally adjusted SNMP data by STL.
The STL model was derived by using the parameters described
in Sec. III-B. The seasonal cycle was evaluated with possible
cyclic periods such as minute, hour, day and week. The
smoothing parameter for the seasonality (ns) was evaluated
with possible values such as the same value with np or
multiples or inverse multiples of np. The smoothing parameter
for trend nt was also evaluated with different values. With
larger nt, the Interquartile Range (IQR) of the trend component
got smaller. This is because smoothing from Loess [10] of the
trend component gets smoother with larger nt, and this result
is increasing IQR of the remainder component.

Different values of seasonality smoothing window (ns)
showed the similar forecast accuracy. The IQR of the seasonal
component did not change with different ns. In addition, trend
smoothing window (nt) changed the shape of trend, but did not
change forecast accuracy. As a result, we selected ns and nt as
the same as ns. While the shape and IQR were changed with
different nt, the forecast error was still similar. This suggests

that the ARIMA is more crucial component than STL in our
forecast modeling. However, fitting with STL is essential since
it removes seasonal component from the original time series.
Using the Seasonal ARIMA or using the ARIMA without STL
appeared to be another possible choice, however computation
time of the modeling these choices took too long to conduct the
experiments. Only after seasonal adjustment, the computation
time of the ARIMA modeling was viable. Fig. 3 shows the
forecast errors when using different seasonal cycles. It is
well known that Internet traffic has cyclic self-similarity in
daily interval. The average forecast error (RMSE) with daily
seasonality was 4.9% better than that of weekly seasonality and
2.8% better than that of hourly seasonality. This result shows
that SNMP data has stronger daily self-similarity than hourly
and weekly periods, similar to the Internet traffic. The average
of Hurst parameters [12] from P1 to P6 were 0.92, 0.94,
0.93, 0.89, 0.94, and 0.87 respectively, which confirms the self-
similarity. While the remainder of STL decomposition did not
pass the Ljung-Box test [22] to check whether autocorrelation
still exists, which led us to use ARIMA to remove existing
autocorrelation from the seasonally adjusted time series.
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Fig. 2: Seasonally Adjusted Components: The top plot in each graph is from the raw SNMP measurement data. The second plot
is for the seasonal component. The third plot is for the trend component. The bottom plot is for the remainder. The horizontal
axis shows the time as days and the duration is 8 weeks from Jan. 20, 00:00:00, GMT 2014 to Feb. 9, 23:59:30, GMT 2014.

C. Bandwidth Utilization Prediction

We compared possible modeling choices including param-
eter selections. The model was developed based on the Box-
Jenkins methodology [7], using ARIMA on seasonally adjusted
SNMP data by STL. The orders of ARIMA model (p,d,q) were
selected in the automated mechanism in Sec. III-C. After fitting
the forecast model with the selected parameters, Ljung-Box
test was conducted to check whether the overall residuals are
similar to the white noise, and the residuals of the forecast
model passed the test.

Forecast Methodology: We tested the possible forecast
methods on seasonally adjusted time series data by STL.
Fig. 4 illustrates the comparison of forecast errors for different
forecast models, ARIMA, Exponential smoothing state space
model (ETS) [17] and Random Walk (RW) [7]. The forecast
error of ARIMA is the lowest, which led us to use ARIMA in
the forecast model.

Logit Transformation: Fig. 5 shows the forecast errors
for the logit transformed data as in Eq. 6, compared to the
unmodified data. The forecast errors were derived from the
forecast models using STL and ARIMA described in Sec. III-B
and Sec. III-C. The forecast error (RMSE) after the logit
transformation was consistently more accurate for each path.
The average forecast error was 8.5% better with the logit
transformation than without the logit transformation. This is
because the logit transformation sets the lower and upper
bounds in the modeling and fitting procedures, which helps
reduce the potential under-estimation and over-estimation from
the forecast.

Training Set Size: Fig. 6 shows the forecast errors for
different sizes of training sets. Although the forecast accuracy
was the best with 16 weeks, this was marginally better than
other training set sizes. Since smaller training set required less
computational resources, we used 8 weeks of training set size
in the following experiments. This shows that increasing the
training set size does not guarantee better forecast accuracy.
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Fig. 3: Forecast Error Comparison with Different Seasonal
Cycles: The size of traffic is shown in vertical axis as bit/s.
The training set size is 8 weeks (n = 80640). The number of
observations per seasonal cycle is one hour, one day, and one
week.
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Fig. 4: Forecast Error Comparison for Different Forecast
Models on Seasonally Adjusted Data: The training set duration
is 8 weeks. The seasonal cycle is one week.

Even the smaller training set than 8 weeks was effective in the
delayed model update, shown in the next Section (Sec. IV-D).

D. Delayed Model Update

We observed that even when KPSS test [20] did not confirm
the stationarity, the time series did not drift significantly. Thus,
we evaluated whether the stationary assumption of SNMP data
was appropriate even when the KPSS test result suggested
non-stationary. We think that the variances of training set and
sudden bandwidth utilization changes made the test results
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Fig. 5: Forecast Error Comparison for Logit Transformation:
The training set duration is 8 weeks. The seasonal cycle is one
week.
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Fig. 6: Forecast Error Comparison for Different Training Set
Sizes: The training set size is 8, 16, 24, 32, 40, or 48 weeks.
The number of observations per seasonal cycle is one day.

inaccurate in some cases. The stationary assumption results
the forecast error (RMSE) 10.9% less than that of forecast
without the assumption. As we observed stationarity of SNMP
data up to 8 weeks in the training dataset, this observation
led to a hypothesis that delaying model updates at least one
week would not degrade the forecast error, instead of updating
and re-fitting the model whenever new measurement data
is available. We updated the minimal parts such as auto-
correlation and moving averages from the initially fitted model.

Training Set Size: We re-evaluated the forecast errors for
different training set sizes when using the stationary model.



0e+00

1e+08

2e+08

3e+08

4e+08

P1 P2 P3 P4 P5 P6
Path

R
M
SE

TrainingWeeks 1 2 3 4 5 6 7 8

Fig. 7: Forecast Error Comparison for Different Training Set
Sizes: The training set size is from 1 to 8 weeks. The seasonal
cycle is one day.

Fig. 7 shows that training set size with around 4 weeks resulted
in better forecast accuracy.
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Fig. 8: Forecast Error Comparison for Different Seasonal
Smoothing Window: The training set size is 8 weeks. The
number of observations per seasonal cycle is one day.

Seasonal Smoothing Window: Fig. 8 shows the forecast
errors for different sizes of seasonal smoothing windows (ns)
with the stationary model. Different values of ns showed the
similar forecast accuracy. The IQR of the seasonal component
did not change with different ns. In addition, trend smoothing
windows (nt) changed the shape of trend, but did not change
forecast accuracy. As a result, we selected ns and nt as
the same as ns. While the shape and IQR were changed
with different nt, the forecast error was still similar. This
suggests that the ARIMA is more crucial component than

STL in forecast. However, fitting with STL is essential since
it removes seasonal component from the original time series.
Using the Seasonal ARIMA or using the ARIMA without STL
appeared to be another possible choice, however computation
time of the modeling these choices took too long to conduct the
experiments. Only after seasonal adjustment, the computation
time of the ARIMA modeling was viable.
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Fig. 9: Forecast Error Comparison for Hampel Outlier Filter:
The training set size is 8 weeks. The number of observations
per seasonal cycle is one day.

Hampel Filter: We applied Hampel filter [27] to evaluate
whether removing outliers helps the forecast accuracy. Hampel
filter is a moving window nonlinear data cleaning filter that can
remove outliers based on Hampel identifier [13]. Outliers were
removed with t-value above 3 or -3, based on 3-sigma rule [27]
and moving window length of 6 hours. We observed that these
parameters were sufficient to remove the most of outliers from
the SNMP data measured in 2013 and 2014. Fig. 9 shows the
forecast error when Hampel filter was applied. The forecast
error is slightly improved, but it is very marginal. Therefore,
we decided not to use Hampel filter in our forecast model.

Delayed Model Update: Fig. 10 shows the forecast errors
for our delayed model update. As we observed stationarity of
SNMP data, this led to a hypothesis that restricting model
updates would not degrade the forecast error. Instead of
updating and re-fitting the model for the daily forecast with
cross-validation, we kept the same model. We updated the
minimal parts such as auto-correlation and moving averages
from the initially fitted model. The result shows that the
accuracy was not degraded, and it improved the computation
time by 83.2% compared to traditional approach such as the
Box-Jenkins methodology [7][8] with updating the models in
daily period. The average computation time from the delayed
model update took 158 seconds to forecast 7 days duration per
path compared to 938 seconds from the model updated daily.

Fig. 11 shows the forecast result of the delayed model
update for one day test set on Feb. 10, 2014. It shows that
our blue-colored forecast values are close to the black-colored
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Fig. 10: Forecast Error Comparison for Delayed Model
Update: The training set size is 4 weeks. The seasonal cycle
is one day.

observed data. Table II shows the variances of the training set
of 4 weeks and the test set from Feb. 10, 2014 to Feb. 16,
2014. The cross-validation results of forecast error as RMSE
are within the variances of the test set. This result validates
the efficacy of our forecast model. When sudden spikes in the
bandwidth utilization were observed from the training set, our
forecast model was resilient to those sudden changes. It was
also accurate to have RMSE within the variances of the test
sets.

Since Mean Error (ME) is much closer to 0 than Mean
Absolute Error (MAE) in Tab. II, the forecast would be
more accurate for large data transfers. ME is denoted as

ME(h) =

1
h ·

hP
i=1

en(i), and MAE is denoted as MAE(h) =

1
h ·

hP
i=1

|en(i)|. This is because the forecast errors are mixed

with positive and negative values. When the transfer time is
longer than 30 seconds (10 TB transfer takes 800 seconds at
theoretical maximum throughput speed on 100Gbps network.),
the aggregated forecast errors from the large data transfer
would decrease. With the same reason, increasing time-scale
by smoothing would increase the forecast errors.

TABLE II: Forecast Error Metrics. The values are expressed
as Gbps (108 bit/second). SDTrain is the standard deviation
of the training set. SDTest is the standard deviation of the test
set. RMSE, MAE, ME is the different types of forecast errors
of cross-validation.

PID SDTrain SDTest RMSE MAE ME
P1 4.13 2.36 2.27 1.72 0.29
P2 4.51 3.37 3.31 2.59 -0.58
P3 4.01 2.07 1.88 1.45 0.47
P4 3.03 2.06 1.85 1.46 0.10
P5 4.64 3.40 3.42 2.74 -1.04
P6 4.00 2.54 2.42 1.79 0.30

E. Discussion and Future Work

Although we did not consider holiday effect and summer
time transition in our model, we believe these effects would
not significantly change our analysis results. We used a central
storage server for the network monitoring measurements, and
the construction and estimation of forecast model were con-
ducted on another server. Distributing the loads of the storage
and computation to other servers would help scalability to
forecast more paths simultaneously. The future work includes
developing a distributed system for the forecast models, and
developing an adaptive model to detect and adjust the modeling
parameters when the long-term trend of bandwidth utilization
is changed.

V. CONCLUSIONS

We present a network bandwidth utilization forecast model,
which can support efficient network resource utilization, effi-
cient scheduling and alternate path finding, and planning on
network link/bandwidth provision for high-bandwidth network.
Since data sharing opportunities over the wide-area network
increase for large-scale scientific data applications which
generate large volume of data, it is challenging to efficiently
coordinate network resources on a shared network. In addition,
sudden bandwidth utilization change makes forecast more
challenging. We observe that the network traffic behavior
for the large scientific data movement shows stationarity
and self-similarity in daily periodicity. Logit transformation
and stationary assumption show effectiveness in reducing the
forecast error by 8.5% and 10.9% respectively. Our experi-
mental results show that the delayed model update reduces
the computation time by 83.2% compared to the traditional
Box-Jenkins approach. It does not show the degradation of
the forecast error when reducing the frequency of the model
updates, and it shows the resiliency when there is a sudden
network bandwidth utilization change. Our forecast model is
accurate to have Root Mean Squared Error (RMSE) within
the variances. The future work includes the adaptive forecast
model based on the long-term trend changes of bandwidth
utilization and the application of the forecast model to the
network provisioning.

ACKNOWLEDGMENTS

This work was supported by the Office of Advanced
Scientific Computing Research, Office of Science, of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. The authors would like to thank Chris Tracy, Jon
Dugan, Brian Tierney, Inder Monga and Gregory Bell at ESnet;
Arie Shoshani, K. John Wu, Joy Bonaguro, and Jay Krous at
LBNL; Richard Carlson at Dept. of Energy.

REFERENCES

[1] “Energy Sciences Network (ESnet),” http://www.es.net/, 2014.
[2] “Network Simulator (ns2),” http://www.isi.edu/nsnam/ns/, 2014.
[3] G. Aceto, A. Botta, A. Pescapé, and M. D’Arienzo, “Unified
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